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Abstract. Because of the advent of high-resolution instruments and new theoretical models, 
Auger spectroscopy has evolved into Auger lineshape analysis, a local probe of the electronic 
structure. This short introduction is devoted to some of its main physical ideas and current 
theoretical problems. 

1. Introduction 

Because of a combination of relativistic and many-electron effects, the detailed theory 
of the Auger spectra is quite involved even for free atoms [l]. In solids, even for C C ’ C  
transitions involving inner levels only, extra complications arise, although core states 
are mildly perturbed by the chemical environment. Moreover, in core-core-valence 
(CC’V) transitions, one of the final-state holes is in the valence shell and, in core- 
valence-valence (CVV) transitions, both holes belong to valence states which are of 
course highly perturbed. It is thus quite remarkable that Auger lineshape analysis (ALA) 
is useful to understand the physics of molecules and solids [2]. Indeed, much useful 
information can usually be gained rather easily. The models used in ALA are based on 
the idea that we may disentangle the solid state aspects from the atomic aspects; although 
idealised, they can be realistic and many situations have been accurately described by 
exact analytic solutions. However, the approximate disentangling of atomic and solid 
state features is not a simple matter. For example, much useful work has been done, to 
date, using atomic matrix elements or atomic intensities. However, the potentials seen 
by the Auger electron emitted by a free ion or by a solid state ion are different, and the 
change in matrix elements can affect the lineshape [ 3 ] ;  appropriate matrix elements 
must then be computed. Further, most of the work was done in a two-step description of 
the Auger process, neglecting core-hole lifetime effects; however, in complex atoms 
where the core levels are wide and many decay channels are open for a given primary 
hole, the theory should explicitly describe the production of the primary hole and its 
decay through all the various channels (one-step description [4]). The work with models 
must always be assisted by physical insight. 

2. Valence spectra and two-hole resonances 

In 1953 it was proposed [5] that the Auger CVV lineshape should be proportional to the 
self-fold of the valence band density of states, weighted by the energy dependence of 
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the Auger matrix elements. 20 years later, it was pointed out [6] that the CVV spectra 
of A1 and Ag are drastically different, the former being band like and the latter atomic 
like. Band-like spectra were qualitatively consistent with the theory in [5], but atomic- 
like lineshapes were not. Various workers found that the CVV spectra of transition 
metals such as Cu [7], In [8], Zn [9], Cd and Ni [lo] are quasi-atomic, while those of Li 
[ll] and Si [12] are band like. This was explained by a simple model [13], restricted 
initially to filled non-degenerate s orbitals in entirely filled bands. It was realised that a 
closed band does not have excitations that preserve the memory of the primary hole and 
allows use of the two-step description; inter-band excitations contribute to dielectric 
screening. The holes are created by the Auger transition in a localised state because 
the matrix elements overwhelmingly favour intra-atomic over inter-atomic transitions. 
(Note, however, that the validity of this statement may depend crucially on the cir- 
cumstance that the local orbital be full. The case of partially filled orbitals is discussed 
below.) Then, let us take the atom with the primary hole as site 0 in the lattice, and let 
100) be the final state with two valence holes localised there. In a valence band, the holes 
are free to hop, and therefore 100) is not an eigenstate; the Auger spectrum turns out to 
be proportional to the square of the matrix element multiplied by the local two-hole 
density of states (LDOS), which is already an important change with respect to the theory 
in [5]. Next, let H, denote the independent-particle Hamiltonian that we would use to 
calculate the one-hole LDOS; the total Hamiltonian is H = H ,  + H,, where H,  accounts 
for hole-hole interactions. Since both holes are created on site 0, it is reasonable to 
include in H,  the short-range part of the repulsion only, since the holes will hardly 
interact significantly any more if they diffuse into the solid. Therefore we borrow H ,  
from the Anderson Hamiltonian and write 

H = H o  + Uno+no-. (1) 

We do not need to specify the free part Ho further, because our solution depends on it 
only through the one-hole LDOS p(w) .  Letting p(o) denote its self-convolution p @ p ,  
the interacting LDOS turns out to be 

N ( w )  = NO(o)/{[l  - UZo(w)]2 + [nUNO(w)]2} (2) 

where Io is the Hilbert transform: 

Some workers regard this as an approximate solution of their own models; others have 
confused it with the exact solution of the Hubbard model with two fermions, which was 
first given in [14]. Nevertheless, equation (2) is just the exact solution of our simple 
model, with an arbitrary Ho and the Anderson-like interaction term in the Hamiltonian. 
It holds for any shape of the LDOS p and yields band-like and quasi-atomic spectra as 
limiting cases. Let W be the width of p. Then, for U W, equation (2) predicts band- 
like spectra, whose lineshape is the self-fold of the one-particle LDOS. However, when 
U/W exceeds a critical value of order unity, which depends on the detailed shape of p ,  
a quasi-atomic peak develops outside the continuum. For larger U/W the band-like 
residuum gradually loses weight, and eventually only a quasi-atomic spectrum remains. 
This ‘U/W criterion’ and the existence of band-like residua in quasi-atomic spectra, 
predicted by the model, have been confirmed experimentally in many cases, starting with 
Cu [ 151 and Ag [ 161. These quasi-atomic peaks correspond to avanishing denominator in 
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equation (2) and represent two-hole resonances; the two holes form a localised state, 
owing to their intense repulsion, by a purely quantum effect. Such resonances also play 
a key role in ionic desorption [17]. CC'V spectra may also represent resonant states, 
with the valence hole bound to the localised core hole; in simple metals and wide-band 
materials, the lineshape can be understood in terms of the valence LDOS, distorted by 
the presence of the core hole [ 181. 

'Extensions' of the simple model that have been published to deal with impurities 
and chemisorbates do not really differ from it. Various genuine extensions exist that are 
still exactly soluble. A model of Auger lineshapes of perfect elemental solids with non- 
degenerate bands, based on the Hubbard Hamiltonian was proposed in [ 191; an identical 
repulsion U exists between up- and down-spin holes on the filled s valence orbitals at 
every site. The exact solution essentially coincides with that in [14] and is more com- 
plicated than that of the simple model. The physics are the same, except that now the 
quasi-atomic resonances can delocalise as bound states in the solid and have a width of 
the order of V 2 / U ,  where V is the nearest-neighbour hopping integral [20]. This is not 
important for closed bands [21], because the width is generally quite small, but for 
open bands the two-hole dispersion is assisted by background holes and may become 
important [22]. Both models have been generalised [23] to degenerate orbitals 
and bands; often, p is a matrix p(ml, m2), where the indices are hole magnetic 
quantum numbers; accordingly, we define the local two-hole states 
Imlm2a) = cA2,,cA1,+ Ivacuum), the Coulomb integrals U(ml, m2, m3,  m4) and the 
interaction matrix W with elements W(m,, m2, m3, m4, -) = U(ml, m2, m3, m4) and 
W(m1, m2, m3, m4, +) = U(ml, m2, m4, m3) - U(m,, m2, m3,  m4). Similarly, we intro- 
duce the two-hole Green function @ with elements 

@(ml ,  m2, m3, m4, a) = -i(m3m4a1(o - H)-'lm,m2a) (4) 

whose real part is n multiplied by the interacting two-hole LDOS matrix. In terms of its 
non-interacting counterpart O0, we can find @ by solving 

(I - @OW)@ = @ O ,  

If the crystal field is weak (as in most metals) or highly symmetric (as in cubic 
crystals), p is diagonal and equation ( 5 )  yields decoupled scalar equations in the ILSJ) 
representation. This means that we need to solve only the simple model for eachmultiplet 
component, multiply by the (essentially) atomic intensities and add. This special case 
has been widely used to analyse experiments, mainly on transition metals and alloys 
[24], and extended to include thespin-orbit interaction [25], working in the intermediate- 
coupling scheme. This is good for transition metals. Accurate ALA on insulating com- 
pounds are needed, since the existing data are too few to provide sufficient evidence 
that we understand the lineshapes in great detail. The assumption of a diagonal p does 
not generally apply to insulating compounds, which complicates the analysis, but not in 
an essential way. The ALA of Si and 0 in S i02  in [26] is based on a model similar to the 
previous ones, the main difference being the use of numerical solutions on finite clusters 
rather than analytic results. However, a more important complication is that, although 
the bands are closed, the orbitals are partially filled. Not only the LDOS must be nor- 
malised to the actual occupancy, but other modifications may be needed. Recently, I 
have proposed a new modification [27] to take into account the orbital shrinkage of 
negative ions when they lose electrons. The hopping matrix element V between site 0, 
where the primary core hole is produced, and its nearest neighbours in a tight-binding 
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solid is changed into V +  q if a hole of opposite spin is also present at site 0. The 
interaction term in the Hamiltonian is 

HI = Uno+no- + q 2 (no -c~+c j+  + no+C&ci- + HC) (6) 
1 

where the sum includes the nearest neighbours and HC stands for the Hermitian con- 
jugate. The exact resolvent G = (0011(0 - H)-l/OO) reads 

(7) 
GO 

{ [ l -  (q/v>(wGo - l)]’ - [U + ~’w(coGO - l)/vZ]Go} G(w) = 

and reduces to the simple model result when q vanishes. The Auger lineshapes of 
negative ions should be characterised by negative values of q ,  that generally entail a 
reduction of the solid induced features. Accurate analyses of spectra of oxides and 
halides should reveal orbital shrinkage effects. 

3. Dynamical screening and shake-up in core and valence spectra 

The parameter U(or, more generally, the matrix W) usedin the above theories represent 
effective hole-hole interactions in the solid, which may differ by 10 eV or more from 
their ‘bare’ or gas phase atomic values. To describe the ‘bare’ interactions and the 
collective modes explicitly, giving rise to dynamical screening, in [28] the final-state 
model Hamiltonian 

H =  Htb +HI  + Hp + Hh-p (8) 
was considered. Htb is a tight-binding term; HI is a hole-hole repulsion term of the 
Anderson or Hubbard form but with the ‘bare’ U, in place of the screened U ;  

H p  = w p b + b  (9) 
represents a plasmon field with creation operator b+; the hole-plasmon interaction is 

= [2g0 2 ni+ni- + 2’/’go(l - 2 ni+ni - )] (b  + b + )  
1 i 

where go is the hole-plasmon coupling constant. The form of (10) means that two holes 
are screened independently when they are on different sites but are seen by the plasmons 
as one charge 2e when they are on the same site; we have justified it provided that wp is 
larger than the hopping integrals. The model was solved exactly by the method of 
excitation amplitudes [29], which has been recently reviewed [30]. We found that 
dynamical distortions tend to be appreciable in the band-like spectra if up is comparable 
with W .  Measurements [31] were made of the CVV lineshape of graphite, and it was 
analysed by a simplified version of the ‘static’ theory. It was found that the experimental 
spectrum had a higher slope than that calculated at its low-binding-energy end, but this 
discrepancy could be cured by introducing the effects of a long-lived valence-core exciton 
near the Fermi level. Also, it was noted that a shoulder on the high-binding-energy side 
could not be understood by the static theory but appeared to be qualitatively consistent 
with the predictions of the ‘dynamical’ theory. In order to make the comparison quanti- 
tative, we generalised the above model to degenerate orbitals and bands [32]. The 
application of the theory to graphite was rather phenomenological in spirit, since we do 
not have much confidence in our understanding of Auger lineshapes in systems with 
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widely open bands (see below). Nevertheless, the results were rewarding, because the 
dynamical theory naturally predicts the shoulder and (adopting the core-valence exciton) 
provides a nice description of the whole lineshape. 

4. The problem of partially filled orbitals and bands 

The CVV spectra of simple metals are band like (see, e.g., [33]), but the general problem 
of ALA is considerably more difficult if open bands are directly involved. The matrix 
elements have to be recalculated ex nouo, especially when the occupation of the local 
orbitals is widely different from the free atoms; the primary hole shake-up effects cannot 
be separated from the final state dynamics, and the two-step theory may fail. Here, I 
wish to concentrate on bands which are almost completely filled, i.e. the hole density n h  

is small; let us start with the earliest model [34], which also assumed non-degenerate 
bands. For I t h  G 1 we may relate the Auger spectrum to the two-hole equilibrium Green 
function Q(t). The same theory consistently describes the photoemission spectrum, 
which is also distorted by correlation effects and is related to the one-particle propagator 
S(t). Moreover, for n h  G 1 we may justify a model of the form (l), including hole-hole 
interactions at a single site, to describe a periodic solid; however, we must compensate 
for the average level shift due to the interaction by a shift c0 = c0( U ,  nh) of the local level 
such that the first moment of the one-hole LDOS is U independent. Therefore the model 
Hamiltonian is taken to be of the form (l), with H ,  = HTB(cO) a non-interacting tight- 
binding model with a parametric dependence on U .  I obtained S for small nh, using the 
low-density approximation (LDA) in [35] and the results explained the satellite peak 
which is observed in the photoemission spectra of transition metals such as Ni. (A similar 
theory was independently obtained in [36].) For the two-particle Green function @, 
following standard diagrammatic prescriptions, I neglected the vertex corrections to 
retain the lowest-order terms in nh. The result was a ladder approximation 

Q(o) = cP,(w)/[I + i U ~ , ( w ) ]  (11) 

where QD is the self-convolution S 0 S of the dressed one-particle propagator. S is 
obtained from the non-interacting propagator So by dressing with the LDA self-energy. 
In [37] a simplified version of the above theory with the second-order self-energy instead 
of the LDA was proposed, but the approach was presented as a generalisation to arbitrary 
nh. On the contrary, in [38] the use of the self-consistent version of the LDA was 
advocated. In [39] the model was then applied to atom clusters, and exact results 
compared with the various approximations. For the one-particle spectrum, the exact 
calculations supported the LDA, even without self-consistency . We got very good agree- 
ment for n h  = 0.1 and fair agreement for n h  = 0.25 up to strongly atomic-like U/W; the 
second-order calculation holds in a more restricted U range, as expected. For the two- 
body propagator, however, we found to our surprise that all the above approaches fail, 
because vertex corrections tend to ‘undress’ the scattering of the two holes. The ‘bare 
ladder approximation’ (BLA), in which bare propagators ,9’ are used instead of the 
dressed ones S in computing QD, gave quite accurate results in a wide parameter 
range. We have generalised the theory to degenerate orbitals including the spin-orbit 
interaction and successfully applied the BLA to M4,5N4,5N4,5 Auger transitions and the 
LDA to N4,5 photoemission from Pd metal ( a h  = 0.0475 for each ( j , j z )  state). We took 
the theoretical uncorrelated LDOS for j = 3/2, 5/2 from [40] and empirical atomic data 
from [41,42]. Fitting the calculated Auger spectrum to the experimental spectrum 
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[43], we found the Slater integral F0(4d, 4d) = 2.63 eV. This was our only adjustable 
parameter, and the same value was used for Auger and photoemission spectra, achieving 
good agreement with both lineshapes. The BLA amounts to evaluating the two-hole 
propagator from So as in closed-band theory, although the partial occupancy of the band 
is taken into account. Its good performance in the graphite calculation (and also in 
molecular spectra) suggests that it could be more generally useful than we at present 
understand. Corrections have been recently proposed in [44,45], based on different 
prescriptions for truncating the hierarchy of higher Green functions arising from the 
equations of motion. While such proposals are interesting, further investigation is 
needed to quantify their merits. 

5. Conclusions 

In closed-band systems, ALA studies give information on the LDOS, on-site electron- 
electron interactions, electron-plasmon vertices and dielectric screening. Much of this 
‘local’ information is unique and complementary to what can be obtained by photo- 
emission and other techniques and we are often able to combine different spectroscopies 
into a coherent description. The theory is now supported by case studies on a variety of 
transition metals, alloys, semiconductors and also ionic solids, although there is a 
clear need for detailed tests on oxides and other compounds. Further theoretical and 
experimental work is needed to understand open-band systems properly and, more 
generally, to grasp problems where the two-step description is violated. However, it 
appears that we have already obtained a good theory of CVV spectra of partially filled 
bands for a small hole density, and the current research on these topics is promising. In 
conclusion, although ALA is certainly not always routine, it has already developed into 
a reliable technique for electronic structure studies. 
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